Class-level spectral features for emotion recognition

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Class-level spectral features for emotion recognition

The most common approaches to automatic emotion recognition rely on utterance level prosodic features. Recent studies have shown that utterance level statistics of segmental spectral features also contain rich information about expressivity and emotion. In our work we introduce a more fine-grained yet robust set of spectral features: statistics of Mel-Frequency Cepstral Coefficients computed ov...

متن کامل

Improving emotion recognition using class-level spectral features

Traditional approaches to automatic emotion recognition from speech typically make use of utterance level prosodic features. Still, a great deal of useful information about expressivity and emotion can be gained from segmental spectral features, which provide a more detailed description of the speech signal, or from measurements from specific regions of the utterance, such as the stressed vowel...

متن کامل

Formant position based weighted spectral features for emotion recognition

In this paper, we propose novel spectrally weighted mel-frequency cepstral coefficient (WMFCC) features for emotion recognition from speech. The idea is based on the fact that formant locations carry emotion-related information, and therefore critical spectral bands around formant locations can be emphasized during the calculation of MFCC features. The spectral weighting is derived from the nor...

متن کامل

Word-Level Emotion Recognition Using High-Level Features

In this paper, we investigate the use of high-level features for recognizing human emotions at the word-level in natural conversations with virtual agents. Experiments were carried out on the 2012 Audio/Visual Emotion Challenge (AVEC2012) database, where emotions are defined as vectors in the Arousal-Expectancy-Power-Valence emotional space. Our model using 6 novel disfluency features yields si...

متن کامل

Low-Order Multi-Level Features for Speech Emotion Recognition

Various feature selection and classification schemes were proposed to improve efficiency of speech emotion classification and recognition. In this paper we propose multi-level organization of classification process and features. The main idea is to perform classification of speech emotions in step-by-step manner using different feature subsets for every step. We applied the maximal efficiency f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Speech Communication

سال: 2010

ISSN: 0167-6393

DOI: 10.1016/j.specom.2010.02.010